
The growth of computer power and connectivity,
together with advances in wireless sensing and
communication technologies, is transforming the
field of complex distributed systems. The ability to
deploy large numbers of sensors with a rapid, broad-
band communication system will enable high-fidelity,
near real-time monitoring of complex systems.
These technological developments will provide
unprecedented insight into the actual performance
of engineered and natural environment systems,
enable the evolution of many new types of engi-
neered systems for monitoring and detection, and
enhance our ability to perform improved and vali-
dated large-scale simulations of complex systems. 

One of the challenges facing engineering is to
develop methodologies to exploit the emerging infor-
mation technologies. Particularly important will be
the ability to assimilate measured data into the simu-
lation process in a way which is much more sophisti-
cated than current, primarily ad hoc procedures.

The reports contained in this section on the
Center for Complex Distributed Systems describe
activities related to the integrated engineering of
large complex systems. The first three papers
describe recent developments for each link of the
integrated engineering process for large structural

systems. These include 1) the development of
model-based signal processing algorithms which
will formalize the process of coupling measure-
ments and simulation and provide a rigorous
methodology for validation and update of computa-
tional models; 2) collaborative efforts with faculty
at the University of California at Berkeley on the
development of massive simulation models for the
earth and large bridge structures; and 3) the devel-
opment of wireless data acquisition systems which
provide a practical means of monitoring large
systems like the National Ignition Facility (NIF)
optical support structures.

These successful developments are coming to a
confluence in the next year with applications to NIF
structural characterizations and analysis of large
bridge structures for the State of California. Initial
feasibility investigations into the development of
monitoring and detection systems are described in
the papers on imaging of underground structures
with ground-penetrating radar, and the use of live
insects as sensor platforms. These efforts are estab-
lishing the basic performance characteristics essen-
tial to the decision process for future development of
sensor arrays for information gathering related to
national security. 

David B. McCallen, Center Director
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Reduced-Order Model for Nonlinear
Suspension Bridge Analysis

Center for Complex Distributed Systems

Introduction

In recent years, the design and analysis of large,
distributed structural systems has become increas-
ingly reliant on large-scale computational simula-
tion. Linear simulations have been the mainstay of
design computations. However, as performance-
based design procedures become more prevalent,
there will be increased demand for accurate numeri-
cal models capable of simulating nonlinear response
and ultimate structural collapse.

The computational requirements for nonlinear
analyses, which include changes in the global model
geometry, impact between adjacent bridge
segments, and material inelasticity, can be prohibi-
tive if general purpose finite-element programs are
used. This fact begs for efficient nonlinear computa-
tional models which allow parametric studies essen-
tial to developing a clear understanding of the
dynamic bridge response.

In addition to computational difficulties, there
continue to be phenomenological issues in the
analyses of these important structures. The effects
of spatially varying earthquake ground motions;

near-field earthquake ground motions containing
long-period ground displacement pulses and perma-
nent ground displacements; and fluid-structure
interaction between a bridge and the turbulent
atmosphere, are topics for which scientific and engi-
neering understanding are incomplete. Appropriate
characterization of damping mechanisms in a long-
span cable bridge remains an area of great uncertainty.

A rigorous understanding of the mechanics of
cable bridge damping, which discriminates between
complex aerodynamic and mechanical damping
mechanisms, has yet to be developed, and it remains
necessary to rely on simple spectral representations
of damping. Spectral damping representations are
complicated by the fact that cable bridge dynamics
can be very broad-band with long wavelength modes
of a flexible deck system on the order of 10- to 15-s
periods, and modes of stiff towers on the order of
0.1- to 0.2-s periods. 

There have been extensive analytical and
numerical studies of the vibrational characteris-
tics of cable-supported bridges undergoing small
amplitude, linear vibrations. The early work of
Abdel-Ghaffar1-3 was important in developing
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With the proliferation of commercially available software tools for structural mechanics and
powerful compute engines, computational simulation of long-span cable-supported bridges is experi-
encing rapid growth. However, due to the physical size and large number of individual members in
these structures, the application of general purpose computational mechanics software may not
represent the optimal solution, particularly for computationally intensive nonlinear analyses and
parametric studies where multiple simulations are required. We have developed a numerical simula-
tion tool specific to the nonlinear, transient, dynamic analysis of cable-supported bridges. The
methodology is predicated on special element technologies which allow a significant reduction in the
number of global equations in the bridge system model. The solution of the equations of motion is
based on a hybrid implicit/explicit procedure in which the bridge gravity configuration is determined
with an implicit solution, and the transient time-stepping solution is based on explicit integration of
the equations of motion. 

David B. McCallen
Center for Complex Distributed Systems

Abolhassan Astaneh-Asl
Department of Civil and Environmental Engineering
University of California
Berkeley, California



Center for Complex Distributed Systems

basic understanding of the linear vibratory dynam-
ics of suspension bridges. Abdel-Ghaffar’s work
developed analytical models for the natural vibra-
tions of suspension bridges and provided insight
on the vibrational interactions between towers,
cables, and deck systems. As part of a combined
simulation and field observation study,
Dumanoglu, Brownjohn, and Severn4 used 2- and
3-D linear computational models to investigate the
natural vibrations of the Fatih Sultan Mehmet
suspension bridge (Turkey) and extracted a large
number of modes for the structure.

Long-span cable bridges are complex and distrib-
uted dynamic systems and model validation and
parameter calibration (such as selection of appro-
priate damping forms) must rely on experimentally
obtained observational data. The only database
currently available for suspension bridges consists
of low amplitude, linear vibrations.5-9

The cited experimental and computational studies
have generally demonstrated the ability of computa-
tional models to adequately represent the lower
natural modes associated with small amplitude,
linear dynamics of a suspension bridge vibrating
about the gravity configuration of the system. Due to
the complexities and computational difficulties of
large-scale nonlinear analyses, and a lack of
measured response data in the nonlinear regime, the
effect of nonlinearities on cable bridge response has
been investigated to a lesser extent. 

Abdel-Ghaffar and Rubin10,11 demonstrated the
nonlinearity associated with modal coupling in
amplitude-dependent free vibrations of suspension
bridges with applications for the Golden Gate and
Vincent Thomas Bridges. Computational studies by
Nazmy and Abdel-Ghaffar12,13 have indicated the
importance of geometric nonlinearities in cable-
stayed bridges with long spans and reinforced the
importance of considering the spatial variation of
earthquake ground motions. 

In addition to research studies, consideration of
nonlinearities in cable-supported bridges is begin-
ning to infiltrate into engineering practice. Ingham,
Rodriguez and Nadar14 have described practical
design application of nonlinear analysis in the seis-
mic retrofit studies of the Vincent Thomas Bridge. 

Further study is necessary to develop a clear
understanding of the nonlinear response of long-
span bridges to strong ground motions, particularly
when the bridge is located in the near-field of a
causative earthquake fault where ground motions
may contain both high-frequency and significant
long-period motions due to near-field effects. There
is no existing observational database for this

response regime, and nonlinear computational simu-
lations must play a central role in developing
improved understanding. 

The objective of our work was the development of
a simple and robust computational model for 3-D,
nonlinear transient analysis of suspension bridges.
The resulting finite-element model accounts for
nonlinearities due to finite displacements, material
nonlinearities in the bridge members, impact
between adjacent bridge segments, and potential
rocking and uplift of large caisson foundations. 

Unique features of the model include the element
technologies, which are tailored to the construction
of a reduced-order model with a significant reduction
in the global degrees of freedom; and the use of an
explicit time-integration scheme for dynamic analyses.
The explicit scheme provides a simple and highly
reliable nonlinear solution framework for transient
nonlinear analyses, particularly when considering
the sudden events associated with impact between
adjacent bridge segments, sudden tensioning of
slack cables, or collapse of bridge components. 

The model incorporates an implicit based, auto-
mated procedure for nonlinear gravity initialization
of the bridge model, which computes the correct
bridge geometry and the correct initial stress field in
the cable and deck trusses for gravity loading. 

The nonlinear model we have developed can be
particularly useful for parametric studies aimed at
understanding the complex transient response of
long-span bridges and the relationship between
bridge response and ground motion characteris-
tics. Because of the importance of validating
special numerical models, particular attention was
paid to comparison of the reduced order model
with both experimental data and higher order
detailed models.

Progress

Computational Bridge System Model

The research study which motivated development
of the computational model consisted of a multidis-
ciplinary seismological and engineering study of the
San Francisco-Oakland Bay Bridge (Fig. 1). With
approximately 280,000 vehicles per day, the Bay
Bridge carries the highest traffic volume of any
bridge in the United States. The bridge is a critical
transportation link and a seismically interesting
structure by virtue of its close proximity to major
active earthquake faults. 

Two new computational tools for numerical simu-
lation of seismic ground motions and structural

Engineering Research Development and Technology1-2
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Figure 1. The five elements of the bridge system model. (a) Finite rotation fiber flexure element for the bridge towers; (b) penalty
node-to-node contact for deck impact; (c) tension-only two-force member with initial stress for cables; (d) composite membrane,
truss, and sway stiffness deck model; (e) caisson block with uplift.
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response were developed for this study. A massively
parallel, geophysics based finite-difference program
has been constructed to model seismic wave propa-
gation.15,16 The geophysics model, which is
described in a companion paper, provides ground
motion estimates, including the effects of near-field
phenomena such as long-period ground displacement
pulses, and coseismic, permanent ground displace-
ments associated with tectonic plate movements. 

The second computational tool, and the subject of
this paper, consists of the special-purpose finite-
element program for nonlinear bridge analysis. The
description references the Bay Bridge system.
However, the solution algorithms and element tech-
nologies described can have broader applicability to
other suspension and cable-stayed bridges with
appropriate changes in element properties. 

The model consists of five major elements, as
shown in Fig. 1. A finite-rotation, fiber bending
element is used to represent the bridge towers. A
tension-only cable element with user-defined initial
stress represents the bridge cable system. A
reduced-order deck model, consisting of a composite
combination of truss, membrane, and sway stiffness
elements, represents the deck and stiffening truss
system. A penalty-based node-to-node contact
element captures potential contact and impact
between the deck system and towers, and a rocking
foundation element represents the large caisson
foundations with potential uplift.

Our philosophy was to maintain the greatest
possible simplicity in the element formulations and
solution algorithms, and to provide a robust algo-
rithm which could handle a multiplicity of strong
nonlinearities. An explicit time integration algorithm
provided the robustness for strongly nonlinear
dynamic problems. Since explicit integration
schemes are conditionally stable with the time step
size governed by the highest frequency of the simu-
lation model, explicit schemes are typically too
costly for long duration dynamic loads such as
earthquakes with existing general-purpose finite-
element programs. However, the potential advan-
tages of explicit integration are well known for
highly nonlinear problems. These advantages
include the basic simplicity and reliability of the
algorithm when compared with the most efficient
quasi-Newton implicit schemes. 

Explicit integration provides accuracy and high
reliability for large nonlinear structures when strong
nonlinearities occur and can readily handle soften-
ing systems or contact intensive problems which
defy or hamper convergence of implicit integration
schemes. Explicit integration is computationally
feasible for long duration problems if the element

technologies and physical element sizes in the
discretized model do not result in prohibitively small
time steps. The simple elements developed in this
study lead to manageable time steps and thus
enable the use of explicit integration. The nonlinear
computational elements and algorithms developed
have been incorporated into the special purpose
finite-element program SUSPNDRS. The methodologies
are described briefly in this paper. A complete
description, including detailed evaluations of element
and software performance, is given elsewhere.17

Nonlinear Solution Framework

In the numerical simulation of cable-supported
bridge systems subjected to dynamic loads, two
distinct steps must be undertaken to obtain the tran-
sient solution. The first step is performance of an
appropriate static, nonlinear gravity load initializa-
tion of the computational model such that the model
emulates the correct geometric shape of the bridge
with the appropriate forces in the individual bridge
deck members, towers, and cable system. 

This initialization must take into account the
design objectives and construction sequence of the
bridge, since the construction procedure can signifi-
cantly influence gravity-induced forces and the final
overall geometrical shape of the bridge. Once the
appropriate gravity configuration is achieved, the
solution can proceed to a transient dynamic analysis
with the static configuration (member forces and
model geometry) serving as the initial condition
state for the dynamic analysis. The total nonlinear
solution must adequately handle both the nonlinear-
static and the nonlinear-dynamic solution phases.

Implicit Static Solution. In the computational
bridge model, the deformation of the structure is
defined by the vector of global displacement compo-
nents {D}. For a given set of statically applied exter-
nal loads on the structure {P}, the structure is in a
state of equilibrium if the external loads equilibrate
the internal resisting forces of the structure,
denoted {Q({D})}, and the forces generated by any
contact across disjoint parts of the structure (such
as expansion joints), denoted {Γ({D})}. In a nonlin-
ear system, the internal and contact forces are
nonlinear functions of the system displacements.

Defining a residual vector {R({D})} as the differ-
ence between the various force components in the
direction of each degree of freedom of the model, 

{R({D})} = {{Q({D})} – {P} – {Γ({D})}} (1)

then an equilibrium configuration of the structure,
denoted {D*}, results in a null residual vector, such

Engineering Research Development and Technology1-4
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as R{D*} = 0. If {D*} is the kth approximation to
{D*}, then a Taylor series expansion of the residual
vector about {Dk} yields,

(2)

where,

. (3)

Neglecting higher order terms in Eq. 2, and
invoking the fact that {R({D*})} = 0, the incremental
displacements are given by,

. (4)

The instantaneous stiffness matrix is defined as
the immediate rate of change of the internal resist-
ing forces and contact forces with respect to system
displacements, thus,

(5)

and the individual terms of this matrix are given by
Eq. 3. The first matrix in Eq. 3 represents the stiff-
ness contribution from the structural elements in
the bridge model; the second represents the effec-
tive stiffness contribution from the penalty-based
contact elements activated during contact between
disjoint parts. In the absence of contact, the contact
stiffness matrix vanishes. The incremental relation-
ship given by Eq. 4 provides the basis for equilib-
rium iterations which yield incremental displace-
ments for updating the displacement vector until the
nodal force residuals and incremental displacements
become acceptably small. In the static solution algo-
rithm implemented in this study, the instantaneous
stiffness is completely reformed for each equilibrium
iteration, leading to a full Newton-Raphson proce-
dure for equilibrium iterations. Equilibrium itera-
tions proceed until the Euclidean norms of the residual
and incremental displacement vectors become
acceptably small. In the SUSPNDRS program, the
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implicit solution is used for gravity initialization of
the bridge system, for other nonlinear static analy-
ses such as push-over tests for a bridge or bridge
components, and as a diagnostic tool when imple-
menting new nonlinear elements.

Explicit Dynamic Solution. The transient bridge
solution is based on an explicit integration scheme
which readily admits arbitrary multiple support
earthquake ground motions. The earthquake ground
motions are defined by ground displacement time
histories at the bridge base support locations refer-
enced to an identical time frame to preserve phasing
information across the bridge structure. The coupled
equations of motion for the bridge system,
constructed from the assembly of element matrices,
are given by,

(6)

where conceptually, [Cfsi] defines the damping due
to fluid-structure interaction and [Cmech] defines the
mechanical damping. The vector {Q({D})} represents
the internal resisting forces of the model elements,
vector {Γ({D})} represents the nodal forces due to
contact of disjoint bridge segments, and

contains the support point
forces generated by applied ground displacements.
In Eq. 6, the fluid-structure interaction damping
forces are assumed proportional to the absolute
velocity of the structure and the mechanical
damping forces are assumed proportional to the
relative velocity of the structure.

The specific form assumed for the bridge energy
dissipation, as characterized by the viscous terms in
Eq. 6, has significant implications for the numerical
implementation of the explicit integration procedure
for the equations of motion. An appropriate damping
form must be inferred from experimentally identified
structural damping values. The results of the modal
damping observations from several studies6-9 are
constructed in graphical form in Fig. 2. In each plot,
the experimentally observed damping values are
shown as a function of frequency. The experimental
data consistently exhibits an inverse relationship
between modal damping and modal frequency, the
only major difference between the various bridges
being the specific amplitude of the damping values.
In addition to the experimental values, a solid line is
included for each dataset indicating the frequency
dependency of damping which would be obtained
with an assumption of mass-proportional spectral
damping (that is, [C] = β[M]). 

For three of the cases (Golden Gate, Newport,
and William Preston), the mass proportional
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damping was anchored at the fundamental mode;
for the Fatih Sultan Mehmet data, there was a
wider scatter and an anchor damping value some-
what lower than the damping of the fundamental
mode proved to yield a better fit. For all of the

small amplitude vibration data, mass-proportional
damping provides a good representation of the
observed frequency dependency of damping. While
this reveals a general trend in the frequency
dependency of the data for these broad-band
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structures, it must be kept in mind that the damp-
ing values were obtained from small amplitude
vibrational data. In practice, it is necessary to
augment the mass proportional damping with
some stiffness-proportional damping to ensure
high-frequency modes are appropriately damped.
This issue is particularly important for explicit
time integration schemes where the higher
frequency modes are resolved in the model.

For mathematical expediency, and lacking more
specific information about the mechanical and aero-
dynamic partitioning of the damping in cable
bridges, an assumption of viscous, absolute velocity-
dependent damping was assumed in the computa-
tional model. Thus, Eq. 6 simplifies to,

. (7)

Traditional central difference formulas provide
expressions for the velocity and acceleration,

(8)

(9)

where n refers to the nth time step. However, if a
stiffness-proportional term is included in the damp-
ing matrix, 

[C] = α[M] + β[K] (10)

the damping matrix is non-diagonal and the finite-
difference expressions in Eq. 8 and Eq. 9 will result
in a matrix inversion for each time step of the
explicit integration scheme. To avoid matrix inver-
sions, and thus preserve the economy of the explicit
integration scheme, an approximation to the velocity
is used in place of Eq. 8,

. (11)

This expression will result in some accuracy loss
in the integration scheme, which is generally
insignificant for these structures due to the short
time step of the explicit integration scheme.

Combining Eq. 7, Eq. 9, and Eq. 11, yields the
recursion relationship for displacement,
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The application of seismic excitation is most
easily introduced in these equations by specification
of the displacements at the base support points of
the structure. Specified displacements are intro-
duced by assigning identity equations for each speci-
fied support displacement in Eq. 12, yielding,

(13)

where vector {Dg} contains the earthquake ground
motion displacement time histories of the bridge
supports, the terms of which are zero except at the
structure support locations. For the Bay Bridge eval-
uation, the structure is founded directly on bedrock
and the support displacement time histories were
obtained directly from a massively parallel finite-
difference model.16

The equations expressed in Eq. 13 provide the
explicit recursion relationships for update of the
structural model displacements at time step n+1,
based on the displacement vectors at previous time
steps n and n–1. Because of the velocity approxima-
tion which has been invoked, and the fact that the
model mass matrix is always a diagonal due to
lumped mass assumptions, no matrix inversions are
required for the solution of {D}n+1. This explicit inte-
gration is conditionally stable, with the maximum
time step permitted being governed by the Courant
limit for the discretization of the particular bridge
model at hand. The approximation invoked in Eq. 11
does effect the integration stability time step, which
must be accounted for in the selection of the inte-
gration time step.18

For earthquake ground motions, there are two
fundamental differences between the explicit algorithm
defined in Eq. 13 and traditional seismic analyses
methods. In the explicit formulation, ground motion
is defined in terms of ground displacement time
histories rather than acceleration time histories,
and the computed displacement quantities are
absolute displacements rather than displacements
relative to the ground reference frame.

Element Technologies

With careful construction and appropriate valida-
tion, it is often possible to develop an accurate
reduced-order model of a bridge system which captures
the salient features of the dynamics of the system, yet
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results in a significant reduction of the global degrees
of freedom relative to a classical discretization from a
general-purpose finite-element program.

The element technologies developed were aimed
at significantly reducing the number of equations in
the global bridge model. The Courant time step limit
for stability of the explicit integration scheme
depends on the transit time of a stress wave through
the smallest elements in the bridge model, and is
thus a function of the physical dimensions of the
elements in the computational model. To maximize
the integration time step, an additional objective
was to construct element technologies which
resulted in physically large element dimensions.

Tower Flexural Fiber Model. A fiber flexural
element was developed for characterization of the
bridge towers. The element can also be used for
other bridge members which may require a flexural
bending element characterization. The element
incorporates both geometric and material nonlin-
earities. The framework for tracking geometry
changes and initial stress inclusion are common to
the bridge deck truss and cable elements described
in a subsequent section. 

For 3-D bending with finite (large) rotations, rota-
tions are nonvectorial and must be incrementally
updated. The flexure element uses three local
element coordinate systems to track both the finite
displacements and the finite rotations of the beam
segments. Two local coordinate systems rotate and
translate with the principal axes of the beam
element at each end (the x′′ , y′′ , z′′ and x′′′ , y′′′ and
z′′′ axes in Fig. 3), and the third updated Lagrangian
system (x′, y′, z′) extends between the element end
nodes and tracks the overall displacement and rota-
tion of the element. 

A fundamental assumption of the element is that
incremental rotations occurring between equilibrium
iterations in the implicit solution procedure or
between time steps in the explicit dynamic solution,
are small and can be transformed vectorially
between the local coordinate systems. This assump-
tion is easily met for practical problems, particularly
with explicit integration where the time steps are
quite small. The element also assumes the deforma-
tional rotations, for example, the rotations between
the x′, y′, and z′ axes and the x′′ , y′′ , and z′′ axes,
are small.
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Gross rigid-body rotations and translations are
removed via the updated coordinate systems.
However, to include the initial stress (geometric stiff-
ness) contributions for the flexural element, which is
required for initiating the bridge model, it is neces-
sary to include all nonlinear terms in the strain-
displacement relationships. To ensure efficiency of
the element for linear as well as nonlinear problems,
a cubic displacement field approximation is used for
the transverse displacements of the flexural element.

Inelasticity in the flexure element is accounted for
by division of the cross-section into a number of fiber
zones with uniaxial plasticity defining the normal
stress-strain relationship for each fiber zone, as indi-
cated in Fig. 3. The element stress resultants are
determined by integration of the fiber zone stresses
over the cross section of the flexural element. The
evolution of the yield surface is monitored by track-
ing the center of the yield region, and a stress update
algorithm was implemented to allow accurate inte-
gration of the stress-stress constitutive law for large
strain increments, including full load reversals. 

To ensure path independence of the solution, the
implementation of the plasticity model for the implicit
Newton-Raphson equilibrium iterations uses a path-
independent procedure whereby the element stresses
are always updated from the last fully converged equi-
librium state. The transformation between element
local and global coordinates is accomplished through a
vector transformation of element forces and displace-
ments in which the transformation matrix consists of
the direction cosines of the current updated element
coordinate system. The flexural element matrices in
natural coordinates are given by,17

(14)

×

(15)

where [T] is the transformation matrix of direction
cosines for the x′, y′, and z′ coordinate system, [B] is
the linear strain-displacement matrix, [BG({d})] is
the displacement-dependent strain-displacement
matrix resulting from the nonlinear strain terms, {F}
is the element stress resultants, and is the
element constitutive matrix. 

The second term of Eq. 15 represents the initial
stress contribution to the element stiffness, and with
appropriate mathematical manipulation,17 this
matrix can be written as a function of the current
axial force in the member. 
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For earthquake simulations, the element stiffness
is only necessary for the implicit iterations required
for the model gravity initiation. After gravity initia-
tion, the element internal resisting forces are
computed from Eq. 14 for the explicit integration of
the equations of motion.

The fiber element representation of the cellular
Bay Bridge tower structure was assessed by
comparison with detailed shell-element-based
models of the Bay Bridge towers. For this compari-
son, a detailed shell- and beam-element model was
constructed for the general purpose finite-element
program NIKE3D,19 and a reduced-order fiber model
was constructed for a selected bridge tower, as
shown in Fig. 4. 

The detailed model used shell and beam elements
to represent the massive laced members which
constitute the tower diagonals and struts. The shell
model completely discretized the internal cellular
structure of the tower and included the transverse
stiffening diaphragms. The fiber model uses one
fiber zone for each cell segment in the tower, for
example, the element uses 62 zones at the base of the
tower, as shown in Fig. 4. The reduced-order tower
model contains 126 active global degrees of freedom.

The first six natural modeshapes of the tower, as
computed with detailed and reduced-order models,
are shown in Fig. 4. The tower frequencies observed
by Carder in 1936 are also shown in Fig. 4. Carder
performed vibrational measurements of the Bay
Bridge towers when the tower construction was
completed prior to spinning of the main cables, thus
experimental frequencies were obtained for all four
of the stand-alone towers of the bridge. Carder iden-
tified the first longitudinal and first transverse mode
for each tower.

The reduced-order model provides good estimates
of the tower dynamics, and in light of the potential
errors in the measured response, there is also good
agreement between both of the numerical models
and the experimental data of Carder. The mode-
shapes shown in Fig. 4 exhibit excellent agreement
and the modal periods also exhibit good correlation.

Reduced-Order Deck Model. A truss bridge
deck system can demand an enormous number of
elements with brute force modeling based on shell
and beam elements; an effective reduced-order
model can dramatically reduce computational effort.
The representation of a 3-D discrete lattice truss
structure by an equivalent continuum has seen wide
use in the development of reduced-order
models.3,20,21 For certain bridge deck configura-
tions, beam-like continua models can adequately
characterize the stiffening truss system in the mid-
deck region of the structure. 
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Figure 4. Detailed shell- and beam-element and reduced-order fiber bending element tower models and computed modeshapes
(experimental values shown parenthetically).



Center for Complex Distributed Systems

However, the ability of continuum-based models
to capture the effects of complex articulations at the
ends of the stiffening trusses is highly suspect, espe-
cially where individual member forces can vary
significantly depending on the specific connectivity
between the truss joints and the towers and abut-
ments. Accurate continuum representations also
become problematic when the bridge deck system
lacks transverse sway bracing, and the deck is
subjected to severe warping deformation. Complex
warping deformations defy attempts to represent the
deformations with simple beam-like kinematics.
Because of the limitations of continuum-based
representations, a more detailed discrete model for
bridge deck systems was developed. The resulting
model represents a compromise between a highly
efficient but questionably accurate continuum model
of the deck system and a prohibitively expensive,
highly detailed, brute force discrete shell- and beam-
element model of the deck system.

The configuration and connection details in the
two-level deck system of the Bay Bridge made
appropriate reduced-order model construction
particularly challenging. Lacking any transverse
sway bracing between the upper and lower decks
(Fig. 5), forces generated between the upper and

lower part of this structure must be transferred
through bending of the stiffening truss elements in
an inter-deck sway deformation. In the longitudinal
direction, the deck slab-to-stiffening truss connection
occurs through weak axis bending of the deck beams
(Fig. 6), providing an extremely flexible connection
between the deck slabs and the stiffening trusses.
The deck slab systems, consisting of the concrete
slab, deck beams, and stringers, are consequently
weakly coupled to the deck stiffening truss in the
longitudinal direction of the bridge, and the full
membrane stiffnesses of the deck slabs are not acti-
vated by deformation of the stiffening trusses in the
vertical plane. The complex kinematic characteristics
associated with deck cross-section warping of this
particular deck system do not readily lend this system
to accurate characterization with beam-like continua.

The reduced-order model is based on special
discrete elements for the deck system components.
The deck model constituents consist of simple truss
elements for the stiffening truss members, an
orthotropic plane stress element for the deck slab
and girder system, and a sway-stiffness element to
account for the transverse bending of the lateral
frames composed of the deck beams and stiffening
truss vertical posts, as shown in Fig. 5. The active
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global degrees of freedom consist of three transla-
tions at each joint of the deck system. The sway-
stiffness element was implemented to eliminate the
need for any rotational degrees of freedom in the
deck model. The capability of the deck system model
to accommodate geometric nonlinearities associated
with arbitrarily large displacements was included in
the model to accurately capture the effects of poten-
tial large displacements occurring in a long bridge
during earthquake ground motions. 

Depending on the bridge system and the method
by which the model is initialized to achieve the
appropriate gravity configuration, gross model
geometry changes and large model displacements
can also occur during gravity initialization of the
bridge model; and inclusion of geometric nonlineari-
ties is necessary for the model initialization process.

The deck truss element shares common
features with the flexural fiber tower model
element in terms of the methodology for including
geometric nonlinearities, displacement tracking,
and material inelasticity. Similar to the tower
flexure element, the member motions are tracked
with a local element updated Lagrangian coordi-
nate system which translates and rotates through
space with the element. For the static initializa-
tion sequence, it is necessary to include the
geometric component of element stiffness for
some of the truss elements to create a nonsingu-
lar initial global stiffness matrix which allows
equilibrium iterations to initiate. To include the
initial geometric stiffness, the user must provide
as input an initial axial tension in selected
members of the deck stiffening truss system. For
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Figure 6. Deck membrane element. (a) Element degrees of freedom and updated Lagrangian coordinate system; (b) upper and lower
deck in-plane models and equivalent membrane.
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the Bay Bridge configuration, for example, an
initial tension must be input for all of the vertical
posts of the deck trusses.

For some vintage truss members, such as steel
laced members, recent research22 indicated the
inelastic behavior can be controlled by inelastic
buckling of the member or buckling of the plate
connections at the end of the members, and can be
quite complex. For these members, a simple elasto-
plastic model is not an accurate representation of
the complex inelastic buckling behavior. However,
idealized elasto-plastic representation can be appro-
priate for modern bridge members where elements
consist of rolled sections, and connections are based
on sound inelastic design methods. The incorpora-
tion of complex inelastic buckling of vintage laced
members and their connections will be addressed in
future SUSPNDRS developments.

The deck membrane element, which represents
the deck slab, beams, stringers, and any existing in-
plane sway bracing, consists of a four-node, isopara-
metric, orthotropic plane stress element. The poten-
tially large rigid-body displacements of the element
are accounted for with an updated coordinate system
which tracks with the element through space, as
indicated in Fig. 6. The element matrices are based
on a classical four node isoparametric formulation.

Selection of appropriate membrane properties
was a nontrivial problem in the development of the
reduced-order deck model for the Bay Bridge deck
system. Because of the flexible connection between
the deck system and the stiffening trusses (Fig. 6),
there is weak longitudinal coupling between the deck
slab system and the stiffening truss. This significantly
reduces the composite action of the deck slabs and
stiffening trusses. The deck membrane element
requires elastic constants which will characterize the
stress-strain behavior of the deck system.

Because of the complex coupling in the Bay Bridge
deck system, the effective membrane properties
cannot be easily obtained analytically from considera-
tion of first principles. Because of the complex defor-
mations, the equivalent membrane elastic properties
were determined numerically by selective loading of
detailed models of deck segments (Fig. 6). The
detailed deck models shown in Fig. 6 were
constructed to include the weak connection between
the deck system and the stiffening truss chords. The
effective membrane properties are obtained from the
detailed model analysis. For example, the longitudinal
membrane effective elastic modulus is given by,

(16)

where ∆1 is the stretch of the deck system for an
applied load of P. After determining the appropriate
elastic constants, the membrane element contribu-
tion to the element internal resisting forces and
instantaneous stiffness are given by,17

(17)

(18)

where [E] contains the effective material constants
obtained from the detailed deck segment models.
Classical four-point Gaussian quadrature integra-
tion is used for the natural coordinate integration of
the matrices.

The sway-stiffness element accounts for the
lateral sway deformation between the upper and
lower decks which results from flexure of the frame
consisting of the deck beams and stiffening truss
vertical posts. In the deck model the sway stiffness
element is an 8 × 8 stiffness matrix which relates
nodal forces to a measure of the lateral sway defor-
mation of the frame. The sway and truss elements
are shown in Fig. 7. The sway deformation between
the decks is approximated by the summation of
angles γ1 and γ2,

γsway = γ1 + γ2 (19)

where,

(20)

. (21)

The nodal forces associated with sway deforma-
tion can be obtained either analytically or numeri-
cally by analysis of the cross-section frame with the
loading and boundary conditions shown in Fig. 7.
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For elastic behavior of the frame, the nodal forces
associated with sway are given by,

. (22)

Combining Eq. 19 through Eq. 22, and using
overall equilibrium relationships between the nodal
forces in Fig. 7, the sway element stiffness matrix is
given by,

(23)

or,

{q} = [ks]{d} (24)

where . Equation 23 provides the sway
element nodal forces in terms of the nodal displace-
ment quantities. The element matrices in global
coordinates are provided by the transformation
between the element instantaneous updated
Lagrangian system and the global system coordinates,
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. (26)

To evaluate the adequacy of the deck model, a
number of comparisons were made between the
reduced-order deck model and a detailed beam- and
shell-element model of the Bay Bridge deck system.
The first five natural modes of a simply-supported
twenty-bay segment of the Bay Bridge deck, as
computed from detailed and reduced-order models,
are shown in Fig. 8. The mode shapes computed
with the two models exhibit excellent correlation,
and the frequencies are within approximately 10%
for all of the first five modes. The simulations of the
deck segment verified the reduced-order deck model
can adequately capture the deck deformational
modes, and the reduced-order model only necessi-
tates a one-element discretization across the width
of the deck. 

This simple example provides a challenging prob-
lem for the reduced-order model because the
discrete boundary conditions applied at the base of
the deck segment result in modes which exhibit
severe racking and warping of the deck (see mode 5,
for example). In a deck with distributed support,
such as the suspended deck of the bridge, the
important deck modes will be of significantly longer
wavelengths, and the effect of the discrete boundary

 
Tsway[ ] = [T({ d } )]T [ks ][T({ d } )]
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conditions will be more localized rather than propa-
gating throughout the entire deck system, as is the
case with the twenty-bay segment.

Bridge Cable Model. The bridge cables are
modeled with a simple tension-only two-force
member. The cable element is essentially identical
to the deck truss element with the exception that the
element coding does not permit compression to
develop in any of the cable elements. If the cable
element attempts to compress, the element stiffness
and residual contributions are neglected in the
implicit solution and the element forces are
neglected in the explicit solution. An initial stress
contribution to the element instantaneous stiffness
is included to render the initial global tangent stiff-
ness matrix of the bridge system nonsingular during
gravity initialization. All of the bridge cable elements
require an initial estimate of the cable tension as
user input; a gross estimate of cable tension proved
to be adequate to initialize the implicit static solution. 

The procedure developed to define the initial
geometry of the cables is based on constraining the
cables by the initial unstretched cable length and
allowing the Newton-Raphson equilibrium iterations
to determine the natural sag geometry and tension
of the cables. With the initial unstretched cable
length of each cable serving as the constraint for the
cable system model, the initial definition of the cable
geometry in the finite-element model can be quite
arbitrary and only affects the number of equilibrium
iterations required to achieve the natural sag. 

A SUSPNDRS program simulation of a simple
sagging cable based on this approach is illustrated
in Fig. 9. The initial geometry in the finite element
model is crudely represented with two prescribed
initially linear segments of cable elements, the total
length of which exactly equals the total unstretched
length of the actual cable. A uniform initial tension
guess is applied as user input to each cable element
for initialization of the initial stress contribution,
and once gravity is applied, full Newton-Raphson
equilibrium iterations achieve the appropriate cable
geometry rapidly within five equilibrium iterations.
The individual cable elements displace through large
rigid-body displacements, and the overall geometry
rapidly progresses to the appropriate hanging cable
geometry. The numerical simulation results precisely
match experimental data for the hanging cable
obtained by Irvine and Sinclair.23 Application of a
point load was also considered after gravity initial-
ization, and the simulation model accurately
computed the deformed shape under gravity plus
point loading, as shown in Fig. 9. 

In the case of the Bay Bridge, the design and
construction objectives included achieving a stress

state in which the chords and diagonals of the stiff-
ening truss were essentially stress free under full
gravity dead load. The vertical posts of the truss
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were thus assumed to be the only gravity stressed
members in the deck truss. This condition was
obtained in field construction by allowing the truss
joints to remain loosely tied together with construc-
tion pins until the deck was entirely supported from
the vertical suspenders, with final riveting of the
joints after the entire deck was suspended. 

As a result of this construction sequence, the
deck stiffening truss did not resist the bridge’s grav-
ity load as a composite structure. This design objec-
tive is common for many lattice deck suspension
bridges. On the Bay Bridge, hydraulic jacking was
also used between the main cables and the cable
saddles atop the towers prior to application of the
deck system to ensure the towers would be straight,
vertical, and free of large shear forces at the
completion of the construction sequence. 

The computational procedure for model initializa-
tion must emulate this construction sequence. To
initialize the bridge model to the appropriate gravity

configuration, an automated procedure was devel-
oped. The procedure (Fig. 10) first analyzes the
main cables and towers under full bridge dead load
to determine the final main cable elevations under
full gravity load (Fig. 10b-c).

In practice, the arbitrary geometry shown in Fig. 10
is not used. Because of the availability of powerful
mesh generators, once the initial unstretched cable
lengths are determined, a subroutine mesh generator
produces an initial bridge model based on a parabolic
approximation of the main cable geometry. For most
bridges, the parabolic approximation provides a
geometry close to the correct shape. Use of a parabolic
geometry is only used for computational expediency;
any initial geometry could actually be used, the only
computational difference being the computational
effort required to achieve the final geometry. The
achievement of the final bridge configuration, starting
with two entirely different initial geometries, is
shown in Fig. 11. The only difference between the
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models is the required number of equilibrium iter-
ations to achieve the final gravity-loaded model.

The parabolic shape is computed such that the main
cables have the appropriate length, and the initial loca-
tions of the deck nodes are determined by dropping to
an elevation corresponding to the unstretched length of
the vertical suspenders. The chord and diagonal

elements of the truss are inactivated for the gravity
initialization, therefore the deck truss will not
contribute stiffness to the model during gravity initial-
ization. In addition, the main cables are allowed to slip
horizontally relative to the tops of the towers, in order
that the towers will be straight and subjected to pure
axial load at the end of gravity initialization. 
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Once the gravity load equilibrium iterations are
complete, precise new element lengths are
computed internally by the SUSPNDRS program and
stored for the chord and diagonal members, so that
they will be exactly unstressed at the gravity load
geometry when the dynamic analysis is initiated. The
gravity deformed shape and tension stress fields
obtained from the static analysis become the initial
condition state for the transient earthquake compu-
tation. Once the appropriate gravity load configura-
tion is achieved, the main cables, which were
allowed to slip relative to the towers under gravity
initialization to keep the towers vertical and absent
of longitudinal shear loads, are slaved to the top of
the towers to provide cable-to-tower connectivity for
the transient response analysis. 

The model developed for half of the Bay Bridge
geometry, based on this procedure, is shown in Fig. 11.
This model initialization procedure ensures that the
bridge computational model will have the correct as-
built bridge geometry.

Deck and Caisson Contact Models. Bridge deck
systems typically contain a number of structural
discontinuities at interior expansion joints and at abut-
ments to accommodate thermal deformations. These
discontinuities can have a pronounced influence on the
dynamic response of the bridge system and can result
in significant dynamic impact between disjoint bridge
segments. Observational measurements of the earth-
quake response of bridges have indicated the occur-
rence of large accelerations and inter-segment forces
as a result of impact of adjacent bridge segments.24

In addition to deck segment impact, during seis-
mic motions, bridge foundations can potentially be
subjected to rocking and uplift, with multiple occur-
rences of impact. For the Bay Bridge, the towers are
placed on large caissons which rest on bedrock, the
caissons are unanchored to the bedrock, and the
potential exists for rocking and uplift of the caissons
under strong ground motion. Foundation rocking can
significantly affect the superstructure response to
earthquake ground motions21 and should be
accounted for in an accurate numerical simulation. 

To simulate deck impact and foundation rocking,
a simple node-to-node contact element was devel-
oped for the SUSPNDRS program which allows two
nodes to close within a specified stand-off distance
before node-to-node contact occurs. The element
also admits tensile forces to develop between the
nodes as the nodes separate to allow representation
of displacement-limiting structural details which can
prohibit large separation of two bridge segments.
For the Bay Bridge, the main suspended spans are
connected to the towers and central anchorage cais-
son with a slip joint that couples the deck to the
tower or caisson in the transverse direction, but
allows limited longitudinal motion once static fric-
tion of the joint is overcome, as shown in Fig. 12.
This construction detail can be compressive when
the deck moves into the caisson or tensile when the
deck pulls away from the caisson.

In the node-to-node contact element, the nodal
force contributions are generated vectorially and
translated into the global bridge geometry based on
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the current deformed shape of the bridge system.
The contact forces are given by,

(27)

where,

ψC(d2, d1, δC) ≡ 1.0 when ((d1 - d2) - δC) >0 and
ψC(d2, d1, δC) ≡ 0 when ((d1 - d2) - δC) ≤0, ψT(d2,
d1, δT) ≡ 1.0 when ((d2 – d1) - δT) >0 and ψT(d2, d1,
δT) ≡ 0 when ((d2 – d1) - δT) ≤0.

The nodal contact forces are assumed directed
collinear along the line defined by the two contact
nodes (Node I and Node J in Fig. 12) and can be
transformed to global coordinates based on the
direction cosines of the line segment. 

With explicit time integration, the numerical values
of the effective contact stiffnesses KT and KC must be
selected in a way which does not result in a reduction

Γ
Γ

1

2

1

2
2 1

1

2
2

1
1

1
1

1
1

1
1

1
1

1
1









 =

−
−












 + −













 ( )( ) + ×

−
−












 +

−
















K
d
d

d d K

d
d

d d

C C C C T

T T

δ ψ δ

δ ψ

, ,

, 11,δT( )( )

of the Courant time step, or alternatively, the Courant
time step must be decreased to reflect the added stiff-
ness to the system when contact occurs. Numerical
experimentation has indicated that if the contact stiff-
nesses are selected such that they are of the same
order as the stiffness of the structural elements which
couple to the point of contact, the interface stiffness
will not adversely affect the integration time step.
Based on this, upper-bound limiting values for the
interface stiffnesses have been used in the SUSPN-
DRS contact elements.

Impact between bridge segments or foundation
rocking with impact can result in sudden large
nonlinearities in the bridge system model.
Rigorous representation of impact phenomena
presents a computationally difficult problem, and
based on the authors’ experience with implicit
time-integration finite-element programs, the seis-
mic analysis of bridges with multiple impacting
segments can be quite difficult with many equilib-
rium iterations and potential converge failure for
each severe impact event. At best, multiple
impacts significantly detract from the efficiency of
implicit time-integration schemes. 
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Explicit time-integration, on the other hand, is
particularly adept at accurately tracking impact
events, with essentially no detriment to the 

algorithm efficiency when impact occurs. This was
one of the primary motivators for including explicit
integration in the SUSPNDRS program. 
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An example of computed deck-tower impact with
the SUSPNDRS program is shown in Fig. 13. A
twenty-segment length of bridge deck is given an
initial applied displacement pulse by moving the top
of the suspension cables with a prescribed 0.75-m
displacement over 6 s. This support motion imparts
an initial swinging motion into the deck segment.
The deck segment is moved away from the tower,
and as the segment swings back freely toward the
tower, impact occurs between the deck segment and
the tower. A stand-off distance is included in the
contact element which represents the physical width
of the tower at the location of the bridge deck, so
the model will initiate impact at the correct physical
location in space.

When the deck segment impacts the tower, large
compressive forces are developed in the deck and
stiffening truss elements, and a compressive wave
propagates down the deck system. During the
impact, the relatively flexible deck is in contact with
the tower for a finite length of time, generating large
contact forces, and when the deck swings back away
from the tower, a propagating release wave is gener-
ated as the stresses in the deck slab and stiffening
truss system are suddenly relieved. The simulation
shown in Fig. 13 was carried out through three
successive impacts as the deck swung back and
forth. The significance of the impact phenomenon on
the deck dynamics can be seen by comparing the
deck displacements for the cases in which impact is
included and neglected, respectively (Fig. 13a). The
impacts significantly change the displacements of
the deck segment as the flexible deck system essen-
tially bounces off of the stiff tower three times. 

The simulation was performed for an undamped
system, and the explicit integration algorithm accu-
rately tracked the impacts and the impact-generated
waves. Computer animations of the impact
sequences indicated that the waves generated with
each impact continued to travel back and forth
across the deck without dissipation for as long as
the simulation was continued.

The explicit time integration scheme implemented
in the SUSPNDRS program has no difficulties track-
ing the sequence of impacts and modeling the wave
propagation up and down the deck segment.

Global Model Dynamics and Transient
Earthquake Response 

Once the bridge model geometry is appropriately
initialized under gravity loading, eigenvalue analyses
can be performed to determine the natural mode-
shapes and the transient response to earthquake

ground motion can be computed. For one span of
the San Francisco-Oakland Bay Bridge, selected
computed natural modes are shown in Fig. 14a. The
fundamental mode of the model consists of trans-
verse motion of the main span and this concurs with
the fundamental mode observation made by Carder
in 1936. The computed modal period also agrees
well with the observation of Carder. 

The range of period values from the computed
model reflect different assumptions of connectivity
between the deck and tower with the lower period
corresponding to an assumption of a locked expansion
connection at the deck-tower interface and the higher
value corresponding to a completely free connection.

A major objective of the research was to
develop understanding of the response of long-
span bridges to near-field ground motions. The
companion paper discusses in some detail the
relationship between the near-field ground
motions and transient bridge response.16

As an example of the potential effects of near field
motions, the response of the bridge segment to 80 s
of earthquake ground motion is shown in Fig. 14b.
The ground motions indicated included a large long-
period displacement pulse and permanent ground
displacement which result at the Bay Bridge site due
to a M = 7 Hayward fault earthquake (see Fig. 1).
The exaggerated bridge displacements indicate that
when the large displacement pulse occurs, the flexi-
ble deck cannot react as fast as the stiff towers and
lags behind, as the towers begin to return in the
opposite direction, the deck has finally begun to
respond and essentially flings through the towers in
the opposite direction. This type of motion can
impart tremendous energy into the bridge system
right at the initiation of the earthquake motions, and
is not unlike the near field phenomenon described for
buildings by Hall et al.25,26

Conclusions

A new nonlinear computational tool has been
developed for numerically simulating the earthquake
response of suspension bridges. The resulting finite-
element model incorporates geometric nonlineari-
ties due to large displacements, potential contact
and impact between disjoint bridge segments, rock-
ing foundation uplift, and material nonlinearities due
to steel plasticity. 

The system solution algorithms use a combina-
tion implicit-explicit solution scheme to achieve
appropriate nonlinear static initialization and
nonlinear transient analysis of the bridge system.
The model relies on reduced-order characterizations
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of the bridge components to minimize the number of
equations in the bridge system model and to ensure
element physical dimensions will be large, thus maxi-
mizing the time step for the conditionally stable explicit
solution algorithm.

The robust nature of the explicit time-integration
scheme provides a numerical solution framework
ideally suited to the transient analysis of a system
with severe nonlinearities and to ultimate collapse
simulations. This framework will readily accommo-
date and exploit new characterizations of complex
individual member nonlinearities (such as laced
members and structural joint nonlinearities and
joint failures) as the information becomes available
from experimental research. 
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Introduction

Realistic and accurate simulation of the seismic
response of long-span bridges presents a significant
technical challenge. The generation of broad-band,
spatially varying ground motion is a difficult seismo-
logical and geotechnical problem, particularly for
bridges located near a causative fault where long-
period near-field effects may dominate the ground
motion hazard for flexible structures. Accurate
simulation of the transient dynamic response of
large bridges also presents the structural engineer
with a significant challenge. Nonlinear response
simulations are computationally intensive for long-
span bridges due to the size of the structural
systems. If significant nonlinearities are prevalent in
the structural system, such as geometric nonlineari-
ties associated with large displacements, material
nonlinearities due to members yielding or buckling
or strong nonlinearities due to impact at expansion
connections or rocking foundations, the computa-
tional requirements for general purpose finite-
element codes may be prohibitive. 

A multidisciplinary research and development
project conducted by the University of California at
Berkeley and the Lawrence Livermore National

Laboratory is investigating both earthquake ground
motion and structural response issues for long-span
bridges. The research is developing a new massively
parallel linear finite-difference computer program
for modeling earthquake wave propagation in
bedrock on a regional basis.1 A special purpose
finite-element program has also been developed for
simulating the nonlinear response of cable-
supported bridges.2 This program exploits the
special characteristics of cable-supported bridges to
arrive at an efficient and economical simulation
model for nonlinear time history analyses. 

These tools are being applied in a case study to an
important bridge on the West Coast of the US. The
San Francisco-Oakland Bay Bridge is located in
California, crossing the San Francisco Bay and
connecting the cities of San Francisco and Oakland
(Fig. 1). The bridge was completed and opened to
traffic in 1936. Currently, the bridge carries an aver-
age of more than 280,000 vehicles per day and is one
of the busiest major bridges in the US. The bridge
consists of two steel suspension bridges in tandem
on the western crossing of the bridge, and a series of
cantilever and simply-supported truss spans on the
eastern crossing. The bridge has two decks, each
deck with five car lanes. During the 1989 Loma
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We have developed new methodologies and computational tools for simulating earthquake ground
motions and the seismic response of cable-supported bridges. The simulation tools are described and
an example application for an important long-span suspension bridge is demonstrated. The applica-
tion portion of the study has particular focus on the potential damaging effects of long period
displacement pulses and permanent ground displacements which can occur when a bridge is located
in the near-field of a major earthquake fault. 
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Prieta earthquake, a 15-m-long segment of the east-
ern crossing bridge deck collapsed, causing closure
of the bridge for one month. Since the Loma Prieta
earthquake, this bridge system has been the subject
of a number of research and design studies
supported by the California Department of
Transportation. This bridge was selected for the
current study because the bridge and surrounding
seismic setting embody all of the important issues
related to long-span bridge response. The bridge is
also a key transportation link for the San Francisco
Bay Area and additional insight into the seismic
response adds information to the knowledge base
for this critical structure.

Progress

Ground Motion Modeling

Ground motion synthetics for long-span bridges
must include waveform information across a
frequency range which encompasses the characteris-
tic frequencies of the structure. In long-span cable
bridge structures, this can represent a very broad
frequency range since the long wavelength modes of

the deck system can exhibit very low frequencies
(0.1 to 0.05 Hz) relative to the vibrational frequen-
cies of the bridge towers (5 to 8 Hz). Historically,
very long period motions have not been accounted
for in seismic hazard characterizations because of a
lack of understanding of ground motion phenomenol-
ogy and the unknown existence of long-period
ground motion pulses. In the last few years, with
additional insight gained by a handful of near-field
ground motion measurements, the importance of
long-period motions have become clear. Analytical
and numerical studies of wave radiation patterns
have confirmed the potential for large, long-period
ground displacement pulses and significant perma-
nent ground displacements in the near field. Ground
motion observations obtained from the 1992
Landers, California earthquake in particular have
provided insight into these important issues, with
observations of large, long-period displacement
pulses near the fault.3 However, the paucity of near-
field strong motion measurements leaves significant
uncertainty regarding the precise waveforms of
near-field motions. Seismologists must rely on
analytical and numerical methods to provide engi-
neers with estimates of the near-field wave forms.

Engineering Research Development and Technology1-26

Figure 1. The San Francisco-Oakland Bay Bridge and local faulting. (a) Eastern and western crossings and fault locations; (b) computed
regional wave propagation for an M = 7 Hayward fault earthquake.
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The ground motion estimates completed for this
study were generated using forward computations
with physics-based models. To capture the required
broad-band motion two approaches were used. The
high-frequency components of motion were deter-
mined based on a Green’s function approach in which
small micro-earthquakes occurring along the Hayward

fault were measured over a period of time with sensi-
tive seismic sensors in bedrock (Fig. 2a) at the Bay
Bridge site. The small earthquakes serve as empirical
Green’s functions which incorporate information about
the complex path and site response characteristics as
seismic waves emanate from a “patch” on the fault to
the site of the structure in question. 
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By appropriately summing up the sources for
the entire fault region through a convolution
process, the site motion for a large earthquake
can be estimated.4,5 The small micro-earthquakes
which are recorded to construct the empirical
Green’s functions are deficient in long-period
information because the small events do not
generate significant energy at long wavelengths.
Research studies have indicated that the Green’s
functions can resolve motions down to approxi-
mately 1 Hz, with lower frequency motions being
in the signal noise.

To develop understanding of the long-period
motions which could occur at the bridge site, and
to augment the high-frequency motions from the
Green’s function method, a massively parallel
finite-difference model was constructed for the
Bay Area region. This model consisted of 50 × 106

regular finite-difference zones of 1/4 km dimen-
sions. The existing geologic database does not
provide sufficient spatial detail on the inhomo-
geneities in the earth to warrant any finer
discretization of the geology. 

This lack of geology definition on a fine scale
results in a frequency limitation in the simula-
tion as higher frequency wave components of
motion are scattered by the inhomogeneities
which cannot be characterized in the model. As
a result, the numerical simulations provide
information at frequencies of approximately
1 Hz and lower. The complete synthetic broad-
band characterization of site ground motions is
obtained by a frequency domain merging of the
high-frequency motions obtained from the
empirical Green’s functions method with the
low-frequency motions obtained from the
massively parallel simulations. 

The specific manner in which the fault rupture
evolves during an earthquake has a large effect on
the ground motions at a specific site. Since the
precise manner in which the fault ruptures is not
known a priori, a number of potential fault rupture
scenarios must be investigated when developing
the hazard for a particular site. Recent research
indicates that on the order of 25 to 30 rupture
scenarios should be examined to capture the vari-
ability of the fault rupture process. Figure 2
shows example synthetic ground motions at the
Bay Bridge site for one particular rupture scenario
for an M = 7 Hayward fault earthquake. This
particular rupture scenario, which corresponds to
a bilateral rupture propagation on the Hayward
fault with rupture initiating adjacent to the Bay
Bridge, results in a particularly large ground
displacement pulse at the bridge site. 

Structural Modeling

The San Francisco-Oakland Bay Bridge consists
of two segments: the West Bay Crossing, which is
the subject of this study, connecting the city of San
Francisco with Yerba Buena Island, and the East
Bay Crossing, which connects Yerba Buena Island
with the city of Oakland (Fig. 1). The West Bay
Crossing consists of twin suspension bridges in
tandem connected to a central anchorage pier. The
central anchorage pier was specially designed to
resist the unbalanced live load of the suspension
cables of the two suspension bridges. The founda-
tion system chosen for the bridge was open cais-
sons, which include the central anchorage caisson
and the caissons which support each tower. The
caissons were placed directly on bedrock and rely
entirely on self weight to maintain contact with the
bedrock. There is no positive anchorage system to
resist uplift of the caissons. The San Francisco
anchorage consists of a concrete block supported
on bedrock and the Yerba Buena anchorage
consists of a cable bent and eye-bar chains buried
in two reinforced concrete filled tunnels.

The steel towers are attached to the piers by
40 anchor bolts connected to steel girders deep in
the concrete piers. The suspension bridge towers
consist of two multi-cell legs braced to each other
with diagonal elements and struts. The tower legs
are silicon high-strength steel while the diagonals
and struts are mild carbon steel. Each of the main
cables are attached to the tower tops with a
single cast steel saddle. The main cables consist
of 37 strands with each strand having 472 wires,
each wire having a diameter of 5 mm. The deck
stiffening trusses are Warren type trusses with
the individual truss members constructed with
laced steel members. The ends of the stiffening
trusses are supported on rocker posts. The rocker
posts provide transverse restraint but permit
longitudinal movement of the stiffening trusses to
accommodate thermal expansion and contraction.
Expansion joint connections limit longitudinal
motion of the trusses to approximately 36 cm
outward and 25 cm inward.

In this research, a special purpose nonlinear
finite-element program, SUSPNDRS, has been
developed for the transient nonlinear analysis of
cable bridge structures. The program uses special
element technologies which were developed to
significantly reduce the number of degrees of free-
dom required to accurately characterize a cable
bridge system. The program includes capabilities
for both geometric and material nonlinearities. The
program accounts for finite displacements in the
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bridge system and uses an updated Lagrangian
framework for each structural element in which a
local element coordinate system tracks with the
element through space and time to remove gross
rigid body displacements.

The five major components of the bridge model
are illustrated in Fig. 3, and the details of the bridge
model element technologies are provided in the
referenced report.2

One of the objectives of the simulation model devel-
opment was the construction of a transient solution
framework which could handle a multiplicity of strong
nonlinearities, including the abrupt and strong nonlin-
earities associated with impact and contact in the
bridge system. The solution algorithm which was
developed consists of a hybrid implicit-explicit algo-
rithm whereby the initial static state of the bridge
under gravity load is determined based on an implicit
solution with Newton equilibrium iterations. A static
load initialization procedure has been developed which
allows the SUSPNDRS program to compute the correct

static geometry and element forces starting with any
arbitrary initial geometry definition of the bridge
cables and deck.2 Once the appropriate gravity config-
uration is achieved, transient earthquake analysis is
carried out with an explicit, central difference-based
time-integration scheme. The explicit scheme is
particularly powerful, and has significant advantages
over implicit time-integration schemes traditionally
used in earthquake computations, when modeling the
impact and contact associated with caisson rocking or
deck-to-tower or deck-to-caisson impacts. Rigorous
modeling of contact phenomenon can lead to signifi-
cantly increased computational effort, or complete
lack of appropriate convergence in implicit integration
schemes, whereas the efficiency of explicit schemes is
not adversely effected by contact. 

In the explicit scheme, the bridge equations of
motion are formulated in terms of absolute displace-
ments rather than the displacements relative to the
ground and the specification of multiple support input
motions is trivially simple. 
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Simulated Earthquake Response

The large ground displacement pulse in the
synthetic earthquake records (Fig. 2) has a total
time duration on the order of 5 s. For stiff struc-
tures, which exhibit natural periods of vibration
significantly shorter than 5 s, the structure would
have minimal dynamic response to this long duration

pulse and would move essentially as a rigid body
with the ground motion. For long-period flexible
structures, on the other hand, this long-period pulse
can significantly excite the lower frequency modes of
vibration, providing a significant dynamic impulse to
the structure.  

The fundamental vibrational mode of one of the
Bay Bridge suspension segments consists of
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transverse vibration of the main span. Based on
field measurements completed in 1936, and
natural mode computations from the current
study, the fundamental mode has a period of
approximately 9 to 10 s. Thus the ground motion
pulse duration is almost exactly one-half the
natural period of the bridge. The result is that the
ground displacement pulse imparts tremendous
energy to the Bay Bridge system at the start of
the earthquake motions. Animation of the bridge
response indicates that the towers of the bridge
move with the ground, while the mainspan deck
can’t respond fast enough due to its large mass
and flexibility and it essentially lags behind the
towers. As the deck finally starts to move to catch
up with the displaced towers, the tower motion has
reversed direction and started to move with the
ground displacement pulse in the opposite direction
(Fig. 4). The result is that the main span deck is
essentially flung between the towers in sling shot
fashion, with a large transverse displacement and
corresponding high stresses in the deck system.

An assessment of the member forces for this
earthquake loading indicated that a large number of
main load-bearing members would be significantly
overstressed. The deck beams, which connect the
deck slabs to the stiffening trusses, would be partic-
ularly susceptible to damage from the deformations
associated with the deck fling.

Conclusions

Two new computational tools have been devel-
oped for simulating earthquake ground motions and

the response of long-span cable bridges. These tools
are shedding light on the nature of near-field ground
motions, including long-period and permanent
displacements which can occur in the near-field, and
the damaging effects these motions can have on
flexible, long period structures.
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ignal Processing for Evaluation and Update
of Simulation Models in Structural Analysis
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Introduction

The design of engineering systems has traditionally
resulted from a mix of theory, empiricism, and experi-
ence based on historical performance. With the
advent of high-performance computers and massively
parallel computations, the hope is that simulations
based on first principles will play an even more
commanding role in the engineering process.
However, for this to come about, it is essential that
large-scale simulation models yield demonstrably
accurate results for the particular problem type under
study. The ability to validate computational models,
based on a rigorous comparison between the actual
measured system response and the simulated
response, is a requisite to building confidence toward
a simulation-dominated engineering process.

Progress

Objectives

Our project is concerned with the evaluation and
validation of computational structural models. The
methodology under development relies on model-
based signal processing to compare simulations with
measured structural response. The signal processing

algorithms are intended to determine the degree to
which the simulation model represents the actual
behavior of the structure, and to provide guidance on
how the simulation model could be improved. In addi-
tion, the signal processing can sense changes in the
structural system, which offers the potential for
establishing an approach for damage detection in
large structural systems.

There are important programmatic applications
which could immediately benefit from the ability to
reconcile simulation models with actual measured
structural response. These applications span a
range of structural types and loading regimes
including the rather violent vibrational response of
reentry vehicles in missile flight tests, the small
amplitude ambient vibrations of optical components
and structures for the National Ignition Facility
(NIF), and the vibrations and transient response of
large transportation structures to earthquake
ground motions (Fig. 1). 

In year one of this study, the framework for
model-based signal processing has been established
and the ability of the signal processing to sense
differences between a simulated and a measured
structure has been studied parametrically. We have
also investigated the degree to which model-based
signal processing can identify the regions of the
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structural model which are deficient and the ability
of the signal processing to provide guidance on how
to update the computational model to enhance accu-
racy. The important questions of observability and
how many sensors are required to provide adequate
measurements have also been addressed.

Model-Based Signal Processing

The signal processing methodology under devel-
opment follows the procedure outlined in Fig. 2. The
essential inputs to the signal processing include the
matrices which result from the finite-element struc-
tural simulation model, including mass [M], damp-
ing [C], and stiffness [K] matrices, and the

measured response of the structure for a given load-
ing. Ideally, the structure should be subjected to
carefully controlled white noise type of excitation for
the initial model identification process so that the
input forcing function is precisely known and a wide
range of vibrational modes are excited.

The model-based signal processor uses the finite-
element-generated system matrices as a starting
point and constructs a simulator of the system based
on a state-space first-order equation system charac-
terization of the second-order finite-element equa-
tions of motion. A Kalman filter-based residual white-
ness test is used to detect any divergence between
the simulation model and the actual structure
response. A Gauss-Newton search routine minimizes
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the differences between the simulation model and the
measured structure in a least squares sense. The
minimization process results in system identification
in which optimal structural model parameters are
identified. These optimal parameters (indicated by
the updated system matrices in Fig. 2), can be
passed back to the finite-element model for parame-
ter update. The signal processing also provides a
methodology for damage detection in that changes in
the structure which are associated with damage can
be sensed once the virgin, undamaged structure is
appropriately identified.

The signal processing procedure which has been
developed has been studied parametrically by extensive
investigation of a simple dynamic structural system,
a five-story building model, as shown in Fig. 3. The
utility of this example is that with appropriate ideal-
ization of the member section properties, the
number of degrees of freedom in the model can be

easily varied from as low as 5, to as high as 500, with
maintenance of the same basic system dynamics.
The equations of motion can also be readily written
down analytically as shown in Fig. 3. This allows
issues of observability and scaling of the signal
processor to be readily investigated. 

This simple example was used in paper studies to
evaluate the ability of the signal processing to detect
divergence between simulated and real structures
and to identify appropriate model parameter modifi-
cations. To achieve this, a finite-element model was
constructed for the structure, and a perturbed finite-
element model was constructed to represent the
“real” structure. For example, one perturbation
might consist of modifying all stiffnesses of the
structure by a significant margin. Another might
consist of modifying selected segments of the struc-
ture in a local fashion. The signal processing algorithm
was then called upon to identify differences between
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the simulated and “real” structures and to identify
structural parameter updates for the simulation model.

These studies were carried out in blind fashion,
whereby the mechanical engineering team members
constructed the simulated model and the data from
the measured “real” structure and passed this infor-
mation to the electrical engineers responsible for
the signal processing. Thus the signal processors
were dealing with two sets of information with no
prior knowledge of the structural perturbations. 

For the simple baseline system with 5 degrees of
freedom fully observed, the signal processing algo-
rithms readily identified the differences between the

simulated and “real” structure, and provided the
appropriate parameters for the model update, as
illustrated with a subset of examples in Fig. 4. For
this analysis the response of the model was simu-
lated for a white noise forcing function applied at
the top of the structure, and the “measured”
response of the “real” structure was also computed
with a perturbed model for the same white noise
forcing function. 

For a fully observable system (for example, the
acceleration response of all five floors was assumed
measured), the signal processing was found to be
very robust, and could accurately ascertain that the
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model and “real” structure were different, as well as
identify the correct distribution of the stiffness in the
“real” structure. 

It should be noted that the differences between
the simulated and “real” structure in Fig. 4 could
equally well be interpreted as the differences
between an undamaged structure (the modeled
structure) and a damaged structure (the “real”
structure). Thus, if one can ascertain that two struc-
tures are different and how they are different,
damage detection is enabled.

In actual large structures, full observability (for
example, every point in the actual structure corre-
sponding to a degree of freedom in the finite-element
model is measured), is a condition which will rarely
if ever be achieved. Because of typical limitations in
the number of sensors and the amount of data which
can be measured practically, almost any real system
will be significantly under-observed. 

The potential impact of low observability has also
been investigated with the simple shear building
model. For this investigation, the dimension of the
model was increased to 10 degrees of freedom with
appropriate master-slaving of the active degrees of
freedom. The ability of the signal processing algorithm

to correctly identify the structure with a reduced set
of observations was investigated for a number of
different observation schemes. For this analysis the
perturbation to provide the “real” structure was as
indicated in Fig. 5. This perturbation represented a
significant and complex change from the original
structure. With all 10 degrees of freedom observed
the mean error in the identified stiffness parame-
ters was 1.2 × 10–9%, which verifies that precise
identification is achieved for a fully observed
system. The mean error in the system identification
for various under-observed scenarios is summa-
rized in Fig. 5. 

In Fig. 5 the cross-hatched box indicates a floor
at which translation was “measured” and a hollow
box indicates a floor at which translation was not
measured. These results indicate that the accuracy
of the signal processing identification tends to be
significantly lower if measurements are not made for
the top two stories of the building. This is correlated
to the fact that the fourth and fifth stories have the
most significant change in stiffness and, if there is
not a local sensor measurement to capture the
dynamics of this softening region, the system identi-
fication can miss these significant changes. 
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Perhaps just as significant is the observation that
if the top floor alone is measured (such as with only
one observation), the system identification still does
a reasonable job of parameter estimation. These
observations underscore the need to have adequate
measurements in the regions of the structure for
which a high degree of uncertainty is anticipated or,
alternatively, regions where damage to the structure
might be anticipated.

Future Work

The second year of this project will investigate
applications for some real structures, in which real-
world issues associated with noisy data come into
play. The focus will also include scaling up the exist-
ing signal processing algorithms to attack much
larger structures.
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Introduction

During the past several years there has been
research into the controllability of various insects by
external stimuli such as electrical pulses to their
antennae area. Prof. I. Shimoyama started the work
at the Tokyo University in Japan. In the U.S., Prof.
S. Crary, a physicist at the University of Michigan,
conducted pioneering work. More recently there
have been over 30 projects of this type funded by the
Defense Sciences Office of DARPA. The scope of the
DARPA projects includes: the response of the
animals to stimuli, animal experiments, animal
models and the development of low power, light
weight controlling circuits and sensors. For the past
year, we have been developing wireless circuits for
the control of the Madagascan Hissing Cockroach
with the intention of using them as distributed
sensors or possibly in search and rescue missions.

Progress

We decided to experiment with the Madagascan
Hissing Cockroach following the advice of Prof. Crary of
the University of Michigan and Dr. M. Willis, an ento-
mologist at the Arizona Research Laboratory,
Division of Neurobiology, University of Arizona. Both
Crary and Willis are being funded by DARPA to study
the neural control of flight steering in the Manduca
sexta moth. 

The Madagascan cockroach is a robust animal,
easy to work with. These animals are often used as
displays in grammar and high school biology
classes. The name hissing comes from the hissing
noise they make when annoyed. They generate the
noise by expelling air from their abdomens. The
Carolina Biological Supply Co. in North Carolina
sells them but they cannot be shipped into
California. We found cockroach colonies at the
University of California at Davis and at the Clorox
Co. in Oakland; the managers of these facilities were
ready to give us animals to experiment with. Instead,
we purchased three adult female cockroaches from a
pet store for $5 each. We kept them in a suitable
container and fed them dried dog food, bread,
lettuce and water. They remain quite active even
after six months of experiments.

In our experiments, we attempted to steer the
Madagascan cockroach by the use of two LED light
sources mounted on either side of the cockroach’s head.
Fig. 1 is a photograph of the electronics components.
The larger circuit board on the left contains the left and
right button and the transmitter electronics. The smaller
circuit board on the right contains the receiver circuit
and is mounted on the animal’s back. We used transmit-
ters/receivers from RF Monolithics and microcontrollers
from Microchip Technology to remotely activate one or
the other of the LEDs. The transmitter/receiver operates
at a frequency of 916.5 MHz. The circuit was designed
so that if a 1-kHz signal was received by the receiver
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on the animal’s back, the left LED would light, but if a
3-kHz signal was received the right LED would light.
The entire backpack on the animal, including the 3-V
battery weighs 5 g. The cockroach weighs 7 g and is
capable of carrying over 100 g. Fig. 2 is a photo-
graph of this configuration of a cockroach with the
installed electronic backpack and two LEDs. These
animals are nocturnal and the thought was that they
have an aversion to light and would turn in a direc-
tion away from any light source.

In actual tests, we did see a tendency for the animal
to turn away from the light source. However, this was
observed once the animal was in forward motion.
Often we had to resort to extra effort to get the animal
moving (such as a slight nudge from behind). In addi-
tion, the turns in response to the light signals tended
to be rather gradual. We did not see any right angle
turns. Also, of the three animals we had in captivity,
one was especially responsive while the other two
showed little interest in our experiments.

Future Work

We demonstrated the ability of the Madagascan
cockroach to carry wireless, battery powered
circuits on their backs. They certainly have enough
carrying capacity to add an environmental sensor

to the transmitter/receiver package we used. The
cost of this electronics is not high, just a few
dollars. We concluded from our work that best
scenario would be to outfit hundreds of these
animals with such electronic backpacks and then
let them wander on their own, sending back infor-
mation on the environment, without attempting to
steer them.
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Figure 1. Photograph of electronics system used to steer cockroach.

Figure 2. Photograph of cockroach with installed electronic
backpack and two LEDs.
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Introduction

The design and analysis of large structural systems
has become increasingly reliant on computational
simulation. As the speed of computational engines
increases, computer memories grow, and massively
parallel simulations become commonplace, the trend
toward reliance on simulations will continue and
likely become even more pervasive. With the increase
in fidelity of simulation models, there are great expec-
tations that simulations will provide improved under-
standing and insight into the way in which structures
respond to various loading conditions. However, in
many respects our ability to discretize and compute
has significantly outpaced our ability to test and verify
our computational models. There is a pressing need
to ensure that the ever larger models which are being
constructed are actually representative of the struc-
ture being simulated.

There are two topical areas which necessitate
research and development attention to address the
growing model validation deficit. 

The first area deals with the need for expedient
collection of response data from large, distributed struc-
tures. Traditional wired sensor and data acquisition
systems are not capable of practical monitoring for very
large structures. Recent experience with wired system
monitoring of large structures (Fig. 1) has shown that

the placement and continuous data collection tasks will
be intractable for structures like a large applied physics
facility on the scale of the National Ignition Facility (NIF)
at Lawrence Livermore National Laboratory (LLNL) or
a transportation structure of the size of the Bay Bridge
(Fig. 2). For example, LLNL engineers recently
performed field experimental testing of the famous
Bixby Creek Bridge near Carmel, California (Fig. 1), and
that experience was found to stretch the application of
wired data acquisition systems to the limit.

The second topical area deals with the processing
of measured response data once the data is
obtained. There is an immediate need to develop
robust algorithms which rigorously compare simu-
lated system response and actual measured system
response, quantify limitations and shortcomings of
the simulation model, and prescribe appropriate
perturbations to the simulation model.

The project described here dealt with the problem
of monitoring large structural systems. A companion
article in this report deals with the second issue of
data processing and model update.

Progress

Our focus was the development of a wireless
instrumentation system which can be used to
monitor very large structural systems. The overall
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We have developed a new instrumentation system for the remote monitoring of structures. A key
element of the system, which enables practical application to large structures, is a wireless commu-
nication capability, allowing remote contacting of the system to provide commands and to retrieve
measured data. The application of this system to vibration monitoring has demonstrated the utility of
such a system and has provided the opportunity for optimization and fine tuning of the system design.
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strategy was to construct the most economical
system with readily available, commercial off-the-
shelf components. The specifications for this
system included:

1. capability for remote access to allow adjustment
and setting of system parameters and down-
loading of data;

2. incorporation of sensors, amplifiers and
sampling rate which would allow selectable

data acquisition over a large amplitude range
(such as ambient vibrations to strong earth-
quake motions) and a broad frequency band
(from 15-Hz modal vibrations typical of stiff NIF
structures, to 0.1 to 0.2 Hz vibrations of a long-
span bridge); and

3. capability for accurate time keeping so that all
measurements can be referenced to a precise
time scale.
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Figure 1. Traditional structural monitoring with a wired system. LLNL study of Bixby Creek Bridge is shown.
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In addition to these basic functions, the intent
was to develop a modular system so that the various
options could be mixed and matched to most
economically suit a specific application. The project
included the design of the overall system, construction
and testing of a prototype system and a field appli-
cation of the prototype system at the NIF construc-
tion site. A corollary objective was to provide data
for validation of the NIF vibrational design criteria. 

The ultimate objective of the instrumentation
system is to allow placement of an array of sensor
clusters around a distributed structure, such that

the local sensor clusters are wired to individual data
acquisition systems and each data acquisition
system can be remotely accessed for data download,
as indicated in Fig. 2. This pattern of instrumenta-
tion was selected after careful review of the maturity
of communication technologies and consideration of
system costs and reliability. For example, wireless
communication between individual sensors and the
data acquisition system would be very desirable, but
was judged too expensive and potentially problem-
atic with regard to reliability within the context of
cost-effective 1999 technology.
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Figure 2. Structural monitoring of large distributed systems with remote data transmission. (a) Example structures which would
benefit from distributed monitoring; (b) distributed individual sensor clusters.
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Monitoring System

The monitoring system, shown schematically in
Fig. 3, was developed to provide the required
funtionality. All of the system components, with the
exception of the sensor housing, were commercially
purchased. The system sensors consist of heavy
seismographic accelerometers, housed in a stiff
aluminum container designed and built at LLNL. The
massive accelerometers provide good signal-to-noise
performance in the low frequency regime. The
sensor housing was designed to ensure strong
coupling through rigid mounting and to mitigate
potential vibrations of the housing which could
affect sensor measurements. Commercial signal
amplifiers were used, and the digital recorder was

constructed to LLNL specifications by a commercial
vendor. Each digital recorder has a companion GPS
unit for accurate positioning and precision timing,
and a cellular-phone-based communication trans-
mitter/receiver for remote communication with the
system. The system can be contacted via a laptop
computer with a phone modem. The system can be
powered with AC hook-up or a solar panel. A battery
power option was included for immediate applica-
tions in the NIF construction area.

In the course of the development, it was found
that the cellular communication system was a major
source of power consumption in the instrumentation
system. To assist in minimizing power usage, a
pager system was implemented which allowed the
system to be “beeped,” thus powering up and turning
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on the cellular communication package. The cellular
package can then be powered down after informa-
tion is relayed or data is retrieved.

An essential element of the development of any
data acquisition system is the establishment of the
accuracy of the measured data. This is particularly
important when a number of different electronic
components are being interfaced together. The accu-
racy of data obtained with remote monitoring instru-
mentation system was thoroughly evaluated by care-
ful comparison with existing high performance data
acquisition systems (Fig. 4). A series of experiments

were conducted for a number of different types of
dynamic loadings and the performance characteris-
tics of the system were established by comparison of
the new remote monitoring system with a system
which has had long-term use and multiple validations
for LLNL seismological applications.

After validating the first prototype of the remote
monitoring system, the system was deployed at the
NIF construction site to monitor ambient ground
motions over an extended period. Such a deployment
provided for evaluation of system performance,
including communications, power usage, and data
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transfer rates, and also provided important site
specific data for validation of the NIF ambient vibra-
tion design criteria. The monitoring system was
located in the Optics Assembly Building (Fig. 5),
where the facility was at cleanroom Protocol 2
during the measurements and the access was
limited. In addition, AC power was unavailable, so
battery operation of the monitoring system was
essential. The capability to remotely contact the
system, to set recording starting and stopping times,
and to download measured data, was essential for
this application. 

The ambient vibration measurements indicated that
the site vibrations were generally within the NIF
design specifications (Fig. 5). There were spikes in the
power spectral density plots at 30 Hz and 60 Hz which
were indicative of vibrations due to running equip-
ment. As NIF construction progresses, ground vibra-
tion monitoring will continue and particular attention
will be paid to the equipment frequency ranges.

Conclusion

An effective wireless system has been developed
for monitoring large structural systems. This system
provides a tool for practical acquisition of vibration
data essential to understanding system response
and validation of system computational models.
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Introduction

Electromagnetic (EM) propagation through
dispersive, inhomogeneous, and conductive mate-
rials, such as soil, rock, and biological tissue, is of
continuing interest, especially when the goal is to
“see” deeper targets with greater clarity.
Currently, single-channel instruments, such as
GPR, have a limited range of investigation in lossy
media due to a limited equipment dynamic range
or performance factor. However, new simulation
and experimental evidence suggests that arrays of
radar sensors could increase characterization
depths of subsurface targets. The array would be
composed of multiple, synchronized transmitters
and/or receivers.

This report presents the initial steps of a new
program to develop a core technology in high power

arrays for 3-D image formation and visualization in
dense media, such as the subsurface of the earth.
The program is built on the extensive body of work
at Lawrence Livermore National Laboratory (LLNL)
in geophysics,1–5 GPR imaging,6–8 and laboratory
measurements of EM properties of materials.9 To
determine the utility of high power ultra-wideband
(UWB) arrays, “proof-of principle” experiments were
performed. These experiments included EM
measurements over tunnels at NTS.

Applications of high power arrays include charac-
terizing UGFs, battle-damage assessment of
targeted UGFs, detection and mapping of unex-
ploded ordnance (UXO), and geophysical surveys,
such as earthquake assessment and monitoring fluid
flow. The deployment of a sparse multi-element UWB
array, which includes multiple time-synchronized
transmitters, has not been done before.
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Neutralization of underground facilities (UGFs) is identified by the US military as a high priority
because underground facilities may be used for the manufacturing and storage of weapons of mass
destruction (WMD) or for other purposes of military importance. Effective neutralization and battle-
damage assessment, especially in a hostile environment, requires the deployment of unattended
sensor systems for detecting and/or imaging subsurface conditions. For the past several years
geophysical techniques have been evaluated for solving this problem. However, seismic methods
cannot provide the level of detail the military needs on the internal structure of UGFs.

Ground penetrating radar (GPR) has been used to investigate shallow subsurface situations. In
many soil conditions the penetration depth of a single GPR unit is limited. Theoretical considerations
and preliminary experiments indicate that a large array of simultaneously excited radar transmitters
will substantially increase the depth of penetration (on the order of tens to hundreds of meters). To
our knowledge, the design and deployment of a multi-element GPR array has not been done because
of the cost, complexity and data-handling requirements. Several preliminary experiments were
performed at tunnel sites at the Nevada Test Site (NTS) to evaluate the efficacy of GPR arrays to char-
acterize underground structures. These tests included measuring the bulk conductivity of the rock
and soil over UGFs, profiling a tunnel with a 25-MHz GPR system, deploying a small array of two
synchronized GPR transmitters, and performing an electrical resistivity topography (ERT) survey over
the same tunnel. 
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Laser Engineering Division
Electronics Engineering

Michael H. Buettner and William D. Daily
Electronics Engineering Technologies Division
Electronics Engineering



Center for Complex Distributed Systems

Progress

Electrical conductivity of soil and rock deter-
mines the depth of penetration of EM signals in
these materials. High conductivity means limited
penetration, low conductivity leads to greater pene-
tration. Therefore, field measurements were made to
get estimates of the bulk electrical conductivity of
the rock at four sites at NTS. With this information
estimates of the RF attenuation in the rock are
calculated, and thus estimate the penetration depth
of GPR at these sites. 

Four areas at NTS were investigated: (1) the BEEF
facility in area 4, (2) U-tunnel in area 12, (3) tunnel
16-A, and (4) tunnel 16-B. To measure the bulk
conductivity we used a standard two-loop induction
survey with a Geonics EM-34 tool. This system is
designed to be used in the vertical dipole mode (coil
lying on the ground surface) or the horizontal dipole
mode (coils normal to the surface and coplanar). The
instrument is designed to work with fixed loop spac-
ings of 10, 20, and 40 m, and conductivity is read
directly on a panel meter in mS/m. Figure 1 shows
the Geonics EM-34 being used at the BEEF facility.

Table 1 lists the measurement results at the four
locations along with the estimated depth of penetration
for a GPR operating at 25 MHz. Figure 2 is a plot of
maximum radar range as a function of electrical
conductivity showing ranges to the tunnel sites.
Available single-channel GPR systems have an adver-
tised performance factor (Q) of about –110 dB.
Improvements in Q, such as with multiple transmitters
or signal processing, will increase depth of penetration.

Since Tunnel 16-B is an “active” tunnel being
used as a test site by a number of investigators, and
since reasonable penetration is predicted, GPR and
ERT experiments were performed over this tunnel in
September 1999. The GPR work used equipment
rented from Sensors and Software, Inc. and was
operated at 25 MHz. The ERT data acquisition
system was developed at LLNL over a period of

many years, and has been used successfully for a
wide variety of imaging applications. Survey lines
were established on the ground surface (Fig. 3),
normal to the tunnel axis at overburden thicknesses
of approximately 10, 12.5 and 20 m. The survey line
at 12.5 m was used for ERT data collection.

The GPR equipment was assembled, set up, and
tested. Profiles were collected along the 10- and
20-m lines, in the constant offset mode. That is, the
transmitter and receiver were kept at a constant
spacing (4 m) from each other, and the pair was
moved in steps of 1 m along the survey line from 50 m
on the east side of the tunnel to 50 m on the west
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Table 1. Results of electrical conductivity measurements at NTS.

Conductivity Estimated radar detection
Location Rock (mS/m) range* (m)

U-Tunnel Dolomite 1.0 to 1.5 20 to 26
Tunnel 16-A Ash-fall tuff 9 to 15 3.7 to 5
Tunnel 16-B Limestone 2 to 2.4 14 to 16
BEEF Gravel/soil 30 to 35 2.2 to 2.4

*Assumptions for GPR: 110 dB effective dynamic range, 25 MHz, metal mesh in roof.

Figure 1. Electrical conductivity measurements at the BEEF
facility, NTS.
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side. At each survey point, the transmitter was fired
many times, and the received signals were stacked
(improves S/N) to produce a plot of received signal
versus two-way travel time. 

The resulting display is a series of these plots
(one per survey point) slightly displaced from each
other as one moves from left to right. When gain is
applied to the data, the characteristic hyperbolic
signature of a target (such as a tunnel) appears at
about the right lateral position and depth, as shown
in Fig. 4. The assumed dielectric constant for
converting the time-scale to a depth-scale is 6,
which is a reasonable value for moist rock. Our
interpretation of Fig. 4 is that the reflector at 10 m
is from the top of the tunnel, while the reflectors
above 10 m are moisture filled joints in the rock,
joints created during tunnel construction. (There
was a heavy rain about a week before this experi-
ment.)  Other reflectors appear in the data as well.
A tunnel signature does not appear in the 20-m
overburden profile, Fig. 5. These results are consis-
tent with the predictions in Fig. 2 for Q= –110 dB.

The final GPR work used two transmitters instead
of one as described above. The reasoning is that two
transmitters will increase the returned radar signal
from the tunnel. The initial experiment to verify this
used a receiver placed over the tunnel axis with a
transmitter 4 m to the west and another 4 m to the
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east of the receiver, as in Figs. 6 and 7. A special
trigger circuit enabled control of the trigger delay
between the two transmitters. This is necessary
because the paths from the two transmitters to the
receivers are not exactly identical in terms of veloc-
ity. Thus to get the tunnel-reflected pulses from the
two transmitters to arrive at the receiver at the
same time, one needs to adjust the trigger delay
between the two transmitters.

The final measurement used a receiver placed
over the tunnel axis with two transmitters 4 m to
the east (next to each other or collocated) of the
receiver, as diagrammed in Fig. 8. If our hypothe-
sis about superposing the returns from two trans-
mitters is correct, this experiment should have
essentially the same result as that described in the
previous paragraph.

The total variation in the differential trigger delay
between the transmitters is about 30 ns. During the
two-transmitter experiments, the differential trigger
delay was incremented in 10 steps. For each delay-
step, each transmitter was turned on and then off
sequentially, then both transmitters were turned on
together. Figure 9 shows examples of the data for
the two collocated transmitters over the tunnel. The
upper panel displays the sequence of measurements
for the 10 delay settings. 

Interpretation involved looking for the strongest
signal at a range of about 10 m, as shown in the
lower left panel, where the tunnel reflections aligned
in time for the three transmitter conditions, T × 1 on
only, T × 2 on only, and then both on. The lower right
panel shows the received GPR waveforms for these
three transmitter conditions, plus the mathematical
summation of T × 1 on and T × 2 on. Note that
summing the two separate transmitter responses
gives very similar results to having both transmitters
on and time-synchronized at the target region.

The ERT survey was performed along the 12.5 m
line. ERT data were collected using a 30-electrode
array that extended from 145 ft (44.2 m) to the east
of the tunnel axis to 145 ft. west of the tunnel axis.
Data were also collected in the EOM mode in which
the steel mesh and rock bolts in the tunnel are
excited to some value of potential and the resulting
potentials measured using the electrode array.
Figure 10 displays the two ERT inversions perpen-
dicular to the tunnel axis.

The top image in Fig. 10 is from data collected
using only the 30 surface electrodes. The surface
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topography is approximated by the discrete steps
formed by the mesh blocks in the top row. The
approximate outline of the tunnel section is super-
imposed. The formation resistivity varies between
about 50 to 3000 Ω m with the most resistive part in
the dry surface material. We do not know what
geological feature causes the prominent conductive
anomaly above and to the right of the tunnel. In this
image the greatest sensitivity is near the surface
and decreases rapidly with depth. At the tunnel
depth the sensitivity is obviously too small to detect
any effect of the void or the metal on the walls.

The lower image was inverted from data collected
using the 30 surface electrodes and the single elec-
trode in the tunnel. This data was collected only to
see what additional information could be generated
in the image using the additional electrode. Notice
that the reconstruction is essentially identical to the
top image except near the tunnel. The additional
information added by the tunnel electrode, although
distorted by the lack of spatial coverage, does give
some additional information. The resistive region
above the tunnel is likely the dehydration of the rock
mass (loss of water results in increased resistivity)
as a result of the tunnel ventilation. This region
extends all the way around the tunnel but only the
upper part is imaged here because of the way the
electrode array is arranged. The conductive region
below the electrode is likely the distorted image
(again because of the electrode arrangement) of the
wire mesh in the tunnel.

Summary

The GPR data indicate that (1) the tunnel was
detectable at 10 m depth of overburden, but not at
20 m depth, and (2) two transmitters can be trig-
gered properly so that additional energy can be put
on target as indicated by a larger radar return.
Without the additional electrode in the tunnel, the
ERT survey did not detect any effect of the tunnel
void or the metal in the tunnel.

Future Work

Groups both inside and outside LLNL are showing
interest in multi-element UWB arrays. As an exam-
ple, a presentation was made to DARPA on using
UWB arrays for UGF characterization. Present day
GPR will not reliably detect deep UGFs.
Experimental studies indicate that a large GPR array
will increase radar range to a level that will interest
DARPA and also DTRA. These programs and others
will be pursued.
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